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This is our last set of notes where we briefly introduce some of the most basic concepts in the theory of
linear systems: stability, controllability, and observability. In brief, a linear system is stable if its state
does remains bounded with time, is controllable if the input can be designed to take the system from any
initial state to any final state, and is observable if its state can be recovered from its outputs. We will
get these definitions more accurate, and give simple conditions to check them out!
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3.1 Internal Stability

Consider the simple, scalar system without input

ẋ(t) = ax(t), x(0) = 1 (3.1)

The solution, of course, is

x(t) = eat (3.2)

whose behavior depends critically on the sign of a:
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When a is positive the solution blows up to infinity, when a is negative the solution dies down to zero, and
when a is zero, neither happens – the solution remains at the same level it started. This is the core of what
stability is all about!

Definition 3.1.1 (Marginal & asymptotic stability) The zero-input LTI system

ẋ(t) = Ax(t) or x(t+ 1) = Ax(t), x(0) = x0 (3.3)

is

• “asymptotically stable” if x(t)→ 0 as t→∞ for every initial condition x0

• “marginally stable” if x(t) 6→ 0 but remains bounded as t→∞ for every x0

• “stable” if it is either asymptotically or marginally stable

• “unstable” if it is not stable (‖x(t)‖ → ∞ as t→∞ at least for some, if not all, x0)
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3.1 INTERNAL STABILITY

�

If you are given a system of the forms in Eq. (3.3), you can compute its trajectories (either analytically or using
numerical simulations) and check the stability of the system from the above definition. This is not a great
idea, however, because it requires solving the differential/difference equation in Eq. (3.3), which is not always
possible analytically. Numerical solutions always exist, but notice that the definition of asymptotic/marginal
stability requires the solutions to go to zero/remain bounded for all initial conditions. It is never possible to
numerically solve the dynamics for all possible initial conditions.

Therefore, we ideally want a simple test to determine stability of an LTI system, without a need to solve for
the state trajectories explicitly. This is achieved, not surprisingly, using eigenvalues!

Recall the notion of similarity transformations from Section 2.9. We learned that for either of the LTI systems
in Eq. (3.3), we can change the basis of the state vector from the standard basis I to a new basis Q, which
would change the representation of x(t) and A to

x̂(t) = Q−1x(t), Â = Q−1AQ

Now, following our discussion of diagonalization in Section 1.7, let’s use Q = V where

V =
[
v1 v2 · · · vn

]
is composed of the eigenvectors of A (and as before, we assume A is diagonalizable). You know from
Section 1.7 that this choice of basis gives

Â = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


where λ1, . . . , λn are the eigenvalues of A. The great thing about the diagonal form of Λ is that it makes the
computation of matrix exponential extremely easy:

eΛt =


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

 (3.4)

In other words, the matrix exponential of a diagonal matrix can be done element by element on its diagonal
(can you show this using the definition of matrix exponential?). Even further, from Theorem 2.9.5 we know
that

A = VΛV−1 ⇒ eAt = VeΛtV−1 (3.5)

so whether eAt remains bounded or not is a direct consequence of whether eΛt remains bounded or not.

To assess the behavior of eΛt with time, recall that each λi is in general complex,

λi = σi + jωi

{
σi = Re{λi}
ωi = Im{λi}

(3.6)

so

eλit = eσit+jωit

= eσit(cosωit+ j sinωit)
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3.1 INTERNAL STABILITY

Notice that the factor cosωit+ j sinωit has always a unit modulus

| cosωit+ j sinωit| =
√

cos2 ωit+ sin2 ωit = 1

so

|eλit| = eσit

Therefore, whether |eλit| converges to 0, diverges to infinity, or remains constant with time, depends only
and only on the sign of σi = Re{λi}, as we saw in Eq. (3.2). This leads us to the following fundamental
result about the stability of LTI systems:

Theorem 3.1.2 (Marginal & asymptotic stability) Similar, but different characterizations hold for the
stability of continuous-time and discrete-time systems:

(i) The diagonalizable, continuous-time LTI system

ẋ(t) = Ax(t), x(0) = x0 (3.7a)

is:

• asymptotically stable if Re{λi} < 0 for all i

• marginally stable if Re{λi} ≤ 0 for all i, and, there exists at least one i for which Re{λi} = 0

• stable if Re{λi} ≤ 0 for all i

• unstable if Re{λi} > 0 for at least one i

(ii) The diagonalizable, discrete-time LTI system

x(t+ 1) = Ax(t), x(0) = x0 (3.7b)

is:

• asymptotically stable if |λi| < 1 for all i

• marginally stable if |λi| ≤ 1 for all i, and, there exists at least one i for which |λi| = 1

• stable if |λi| ≤ 1 for all i

• unstable if |λi| > 1 for at least one i

�

The second part of the above theorem, for discrete-time systems, may not be immediately clear to you, so
let’s dive deeper into it. Notice that the discrete-time conditions are a direct parallel of the continuous-time
ones, except that the real part of λi has been replaced by its modulus, and comparison to 0 has been replaced
by comparison to 1. This is why:

Consider the discrete-time counterpart of Eq. (3.1),

x(t+ 1) = ax(t), x(0) = 1

The solution, as we saw in Eq. (2.14), is

x(t) = at (3.8)

whose convergence/divergence depends, not on the sign of a, but on the absolute value of a:
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3.1 INTERNAL STABILITY
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The solution dies down to zero if |a| < 1, blows up if |a| > 1, and neither dies down nor blows up if |a| = 1.

The extension of this discussion to the full, matrix version in Eq. (3.7b) is now straightforward. We perform
the same diagonalization as in the continuous-time case, but instead of Eq. (3.5) use the fact that

A = VΛV−1 ⇒ At = VΛtV−1

instead of Eq. (3.4) use the fact that

Λt =


λt1 0 · · · 0
0 λt2 · · · 0
...

...
. . .

...
0 0 · · · λtn


and instead of Eq. (3.6) use the polar representation of λi:

λi = rie
jθi ,

{
ri = |λi|
θi = ]λi

so

λti = rtie
jtθi

and therefore

|λti| = |rti | · |ejtθi |︸ ︷︷ ︸
1

= rti

whose behavior is precisely that of Eq. (3.8). Just note that, unlike a in Eq. (3.8) which could be positive or
negative, ri ≥ 0 since it is the modulus of λi.

Therefore, putting everything together, we see that whether At converges/diverges depends on whether the
moduli of its eigenvalues are less than, equal to, or greater than 1, which is what we saw in Theorem 3.1.2.
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3.1 INTERNAL STABILITY

Example 3.1.3 (Pendulum) Consider again the pendulum of Example 2.1.3, but without any external
forces (u = Fext = 0) and with linear (viscous) friction

Ffric(θ̇(t)) = bθ̇(t)

The state space equations then read

ẋ = f(x) =

[
x2

− g
L sinx1 − b

mLx2

]
which are nonlinear, so we have to first linearize them around an equilibrium point (recall Section 2.4). The
equilibria are the solutions of

f(x) = 0⇔

{
x2 = 0

− g
L sinx1 − b

mLx2 = 0

⇔

{
x2 = 0

sinx1 = 0

⇔

{
x2 = 0

x1 = · · · ,−2π,−π, 0, π, 2π, · · ·

so the system has infinitely many equilibrium points, corresponding to the downward position at rest

x∗down =

[
0
0

]
, the upward position at rest x∗up =

[
π
0

]
, and their rotations.

First, we linearize the system around x∗down

∂f

∂x
=

[
0 1

− g
L cosx1 − b

mL

]
A =

∂f

∂x

∣∣∣∣
x∗
down

=

[
0 1
− g
L − b

mL

]
Recall that this linearization is only an approximation to the pendulum equations, and is only valid near
x∗down. To assess its stability, we have to compute the eigenvalues of A (using MATLAB or by hand),

λ1 =
−b−

√
∆

2mL

λ2 =
−b+

√
∆

2mL
, ∆ = b2 − 4m2gL

and check their real parts. Clearly, two scenarios can happen:

• ∆ < 0: In this case, λ1 and λ2 are both complex, and their real parts are

Re{λ1} = Re{λ2} = − b

2mL
< 0

so the linearized system is asymptotically stable (Theorem 3.1.2(i)).

• ∆ ≥ 0: In this case, λ1 and λ2 are both real, so Re{λ1} = λ1 and Re{λ2} = λ2. Clearly, λ1 is negative.
λ2 is also negative because

λ2 < 0⇔ −b+
√
b2 − 4m2gL

2mL
< 0

⇔ b >
√
b2 − 4m2gL

⇔ b2 > b2 − 4m2gL

which is clearly true, which means the linearized system is also asymptotically stable in this case.
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3.2 INPUT-OUTPUT STABILITY

Therefore, we see that x∗down is asymptotically stable regardless of the values of the parameters, which makes
perfect sense! If you release the pendulum near x∗down, friction will eventually dissipate all of its initial energy
and it will stop at x∗down. Again, note that I said if you release the pendulum near x∗down, because the
linearization is only a valid approximation there.

Next, we do the same around x∗up. The linearization is very similar,

A =
∂f

∂x

∣∣∣∣
x∗
up

=

[
0 1

+ g
L − b

mL

]
and the only difference is in the sign of a21. This changes the eigenvalues of A,

λ1 =
−b−

√
∆

2mL

λ2 =
−b+

√
∆

2mL
, ∆ = b2 + 4m2gL

where the only difference is in the value of ∆. Clearly, ∆ is always positive, so both eigenvalues are real
regardless of the values of the parameters. λ1 < 0, but λ2 > 0 (why?), so the linearization is this time
unstable. This again makes perfect intuitive sense, because if you release the pendulum near the upward
position, it will move away from it (but of course not to infinity, because the linearization is only valid near
the equilibrium point!). �

3.2 Input-Output Stability

Our discussion so far has been about the internal stability of an LTI system, meaning that we discarded
the inputs and outputs of the system and only studied the system’s state response due to initial conditions.
In this section, we do the opposite: we discard the initial conditions and only study the system’s output
response due to the inputs. Because of the superposition property, this provides us with a complete picture
of system’s stability.

Consider a continuous-time LTI system which is initially at rest

ẋ = Ax + Bu, x(0) = 0 (3.9a)

y = Cx + Du (3.9b)

This time, we are interested in whether the system’s output remains bounded in response to the input, or
not. And notice that our focus here on the output (vs. state) is only for generality: you can always choose
C = I and D = 0 to get y = x.

A critical aspect of input-output stability is appreciating the fact that the output is the result of an interaction
between the input and the system. And both of them can make the output explode.

(i) If the input explodes (for example u(t) = et), the output of even the most stable systems (for example
ẋ = −x+ u, y = x) may explode as well.

(ii) Similarly, if the system is explosive (for example ẋ = x + u, y = x), the output may explode even in
response to the weakest inputs (for example u = k sin t for arbitrarily small k).

The first case is kind of trivial (you put in infinite energy into any system and it explodes), and therefore
not interesting. What is interesting for us is the second case: whether the system is explosive or not. This
motives the definition of BIBO stability, as follows:
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3.2 INPUT-OUTPUT STABILITY

Definition 3.2.1 (Bounded-input bounded-output (BIBO) stability) The LTI system in Eq. (3.9) is
BIBO stable if its response to any bounded input is bounded. In other words, the output remains bounded

|y(t)| ≤ ymax, for some upper bound ymax

whenever the input is bounded

|u(t)| ≤ umax, for some upper bound umax

In these equations, |y(t)| is the element-wise absolute value of y(t), similarly for |u(t)|. �

The input-output nature of BIBO stability motivates the use of the system’s convolution property (Eq. (??))

y(t) = H(t) ? u(t)

or its frequency-domain version

Y(s) = H(s)U(s)

These essentially bypass the state and describe the output directly as a function of the input. In fact, it
turns out that:

Theorem 3.2.2 (BIBO stability and impulse response) The system in Eq. (3.9) is BIBO stable if and
only if all the poles of H(s) have negative real parts. �

A few important remarks about this theorem are worthwhile:

• In item (iii) of the theorem, when we say all of the poles of H(s) have negative real parts, we mean all
of the poles of all of the entries of H(s).

• More importantly, recall from Theorem 2.8.5 that the poles of H(s) are the same as the eigenvalues of
A, except if a zero-pole cancellation occurs. This means that BIBO stability and asymptotic stability
are the same, except in the rare instances of zero-pole cancellations.

Example 3.2.3 (Zero-pole cancellations – revisited) Consider again the system of Example 2.8.4. The
system’s A matrix has eigenvalues

λ1 = −1

λ2 = 2

which means that the system is internally unstable. However, the system’s transfer function has only one
pole at

p1 = −1

which means that the system is BIBO stable! �

Cases like the above example are extremely rare, but very important: the system explodes internally (x(t)
diverges to infinity), but we do not observe it at the output (y(t) remains nice and bounded). In practice,
this is clearly a dangerous situation and highlights the importance of placing enough and appropriate sensors
in a system so that any internal instabilities can be observed and mitigated.
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3.3 OBSERVABILITY

3.3 Observability

Consider the continuous-time state space system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, t ∈ R (3.10a)

y(t) = Cx(t) + Du(t) (3.10b)

or the discrete-time version

x(t+ 1) = Ax(t) + Bu(t), x(0) = x0, t = 0, 1, 2, . . . (3.11a)

y(t) = Cx(t) + Du(t) (3.11b)

Example 3.2.3 makes a critical point about these state space systems clear: the output may only provide
partial information about the state. For most real-world systems, the dimension of the output, p, is less than
the dimension of the state, n. This means that even if

we know A,B,C,D, and u(t),y(t) for all t (3.12)

directly solving the system of equations

Cx(t0) = y(t0)−Du(t0)

to obtain x(t0) (for any time t0 of interest) is often not possible, because of having more unknowns than
equations ⇒ infinitely many solutions. However, we have the advantage of time. That is, we are not limited
to solve for x(t0) only using u(t0) and y(t0) at time t, we can use the entire history of the signals u(t),y(t)
for all t. But how?

Before we move forward and see how we can best use all of this information, note that as long as Eq. (3.12)
holds,

knowledge of x(t) for all t ≡ knowledge of x(0)

This is because, once we have x(0), we can solve the dynamics and obtain x(t) for all other times. This
motivates the notion of observability :

Definition 3.3.1 (Observability) The LTI system in Eq. (3.10) or Eq. (3.11) is called “observable” if the
knowledge of u(t) and y(t) over some finite time interval 0 ≤ t ≤ tf (together with A,B,C,D) is enough to
uniquely determine x0. �

Our emphasis of “some finite time interval” in this definition is to make it more realistic – we never have the
entire, infinitely long history of the signals u(t) and y(t).

Checking observability is slightly different for continuous-time vs. discrete-time systems. The latter is simpler,
so we start there! Assume Eq. (3.12) holds and we want to find x0 for the system in Eq. (3.11). As we saw
in Section 2.5.1,

y(0) = Cx0 + Du(0)

y(1) = CAx0 + CBu(0) + Du(1)

y(2) = CA2x0 + CABu(0) + CBu(1) + Du(2)

...

y(tf ) = CAtf x0 + CAtf−1Bu(0) + · · ·+ CBu(tf − 1) + Du(tf )
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3.3 OBSERVABILITY

Note that everything in these equations are known, except for x0. So we need to solve the linear system of
equations 

C
CA
CA2

...
CAtf

x0 =


y(0)−Du(0)

y(1)−CBu(0)−Du(1)
y(2)−CABu(0)−CBu(1)−Du(2)

...
y(tf )−CAtf−1Bu(0)− · · · −CBu(tf − 1)−Du(tf )

 (3.13)

If our knowledge of A,B,C,D and u(t),y(t) are accurate, this system of equations always has a solution
(right?). But the question is whether it has a unique solution. From Eq. (1.11), we know that this is the
case if and only if the coefficient matrix

Otf =


C

CA
CA2

...
CAtf


is full column rank. For reasons that we skip here (the Cayley-Hamilton theorem), this matrix is full column
rank for all tf ≥ n if and only if the observability matrix

O =


C

CA
CA2

...
CAn−1

 (3.14)

is full column rank. This gives us the following theorem (trust me for the continuous-time version!)

Theorem 3.3.2 (Observability & observability matrix) Both of the systems in Eq. (3.10) and Eq. (3.11)
are observable if and only if the observability matrix O in Eq. (3.14) is full rank. �

Notice that O is np-by-n, so being full rank and full column rank are the same for it.

Example 3.3.3 (Zero-pole cancellation – revisited) Consider again the system of Example 2.8.4. Its
observability matrix is

O =

[
C

CA

]
=

[
−1 −2
1 2

]
which is clearly not full rank, and the system is therefore not observable! You can even move further and

compute the null space of O, which is 〈
[
−2
1

]
〉. This means that changing x0 along the direction of z =

[
−2
1

]
has absolutely no effect on the output. This null direction is indeed the direction along which the solutions
of this system diverge to infinity, making it invisible from the output! (Can you show this?) �

Note that the observability matrix is independent of B or D, showing that observability is all about the
output – the input can even be set to zero when studying observability. This is why we even sometimes say
the pair (A,C) (instead of the system) is observable or not.

Now let’s assume that the system is observable, and go back to Eq. (3.13). Recall from Section 1.4.7 that
the solution can be found using the pseudo-inverse,

x0 = (OTtfOtf )−1OTtf ỹtf
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3.4 CONTROLLABILITY

where ỹtf is the large vector on the right hand side of Eq. (3.13). In this solution, and in the study of
observability in general, the matrix OTtfOtf plays a central role, and is therefore given a special name:

Definition 3.3.4 (Observability Gramian) The symmetric matrix

Wo(tf ) = OTtfOtf =

tf−1∑
t=0

(AT )tCTCAt, tf ≥ n

is called the “observability Gramian” in discrete time. Similarly, the symmetric matrix

Wo(tf ) =

∫ tf

0

eA
T tCTCeAtdt, tf > 0

is called the “observability Gramian” in continuous time. �

It is not hard to show that all of the eigenvalues of Wo(tf ) (which are real, right?) are nonnegative, for all
tf . Therefore it is always positive semidefinite. However, if the system is observable (O is full rank), Wo(tf )
becomes full rank (nonsingular) as well, and therefore positive definite. This is why the positive-definiteness
of Wo(tf ) is another test of observability, similar to the full-rankness of O.

3.4 Controllability

The notion of observability (Definition 3.3.1), at its core, is essentially asking whether the output is rich
enough to determine the state. The notion of controllability, is the dual to this: whether the input is rich
enough to determine the state:

Definition 3.4.1 (Controllability) The LTI system in Eq. (3.10) or Eq. (3.11) is called “controllable” if
for any initial state x0 and any final state xf , the input signal u(t) can be designed such that the system,
starting from x(0) = x0, reaches x(tf ) = xf in some finite time tf . �

Interestingly, determining whether the system is controllable or not is also easier in discrete time, and boils
down to a system of linear equations: from 2.5.1,

x(tf ) = xf = Atf x0 + Atf−1Bu(0) + · · ·+ ABu(tf − 2) + Bu(tf − 1)

This time, everything is known, except for the inputs u(0), . . . ,u(tf − 1) which we have to design. So we
have to solve the linear system of equations

[
B AB · · · Atf−1B

]


u(tf − 1)
u(tf − 2)

...
u(0)

 = xf −Atf x0 (3.15)

This time, we are not worried about the uniqueness of solutions (the more options we have, the better designs
we can get), we are seeking to know if this equation has any solutions! But from Section 1.4.1, we know that
this is the case for all x0 and xf if and only if the coefficients matrix

Ctf =
[
B AB · · · Atf−1B

]
is full row rank. Similar to above, the Cayley-Hamilton theorem lets us know that this is the case for any
tf ≥ n if and only if the controllability matrix

C =
[
B AB · · · An−1B

]
(3.16)

is full row rank. Therefore, we have the next theorem! (and again, trust me for the continuous time case)
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3.4 CONTROLLABILITY

Theorem 3.4.2 (Controllability & controllability matrix) Both of the systems in Eq. (3.10) and Eq. (3.11)
are controllable if and only if the controllability matrix C in Eq. (3.14) is full rank. �

As for observability, we see that controllability is really all about A and B, without any role played by the
output matrices C or D. As such, instead of saying whether the system is controllable or not, we sometimes
say whether the pair (A,B) is controllable or not.

MATLAB 3.4.3 (Controllability & observability matrices) In MATLAB, you can easily compute the
controllability matrix C via ctrb(A, B) and the observability matrix O via obsv(A, C). As always, you
can check their rank using rank(). �

Similar to what we did for observability, assume now that the system is controllable, and revisit Eq. (3.15).
Ctf is hardly full column rank (because its number of columns, ntf , is usually larger than its number of rows,
n), and therefore the solution is hardly unique (though is not impossible). But we know from Section 1.4.7
that at least one solution can be found easily using the pseudo-inverse:

u(tf − 1)
u(tf − 2)

...
u(0)

 = CTtf (Ctf CTtf )−1(xf −Atf x0)

Similar to the observability Gramian, the matrix Ctf CTtf is called the controllability Gramian, and plays a
central role in the study of controllability:

Definition 3.4.4 (Controllability Gramian) The symmetric matrix

Wc(tf ) = CTtf Ctf =

tf−1∑
t=0

AtBBt(AT )t, tf ≥ n

is called the “controllability Gramian” in discrete time. Similarly, the symmetric matrix

Wc(tf ) =

∫ tf

0

eAtBBT eA
T tdt, tf > 0

is called the “controllability Gramian” in continuous time. �

The relationship between the controllability Gramian and controllability is the same as the relationship
between observability Gramian and observability: the controllability Gramian is always positive semidefinite,
for all tf , and is positive definite/nonsingular for all tf if and only if the system is controllable.

Throughout this section, I am sure you could have not helped but notice the strong similarity between
controllability and observability! The following theorem makes it formal:

Theorem 3.4.5 (Duality between controllability and observability) The pair (A,B) is controllable
if and only if the pair (AT ,BT ) is observable. �

Example 3.4.6 (Canonical forms – revisited) Consider again the canonical forms in Example 2.9.2. For
the controllable canonical form, we have

rank(C) = 6⇒ full rank⇒ controllable

rank(O) = 3⇒ rank deficient⇒ not observable
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3.5 FEEDBACK STABILIZATION

hence the name! Similarly, for the observable canonical form, we have

rank(C) = 3⇒ rank deficient⇒ not controllable

rank(O) = 6⇒ full rank⇒ observable

Note that while the controllable canonical form is always controllable, it may or may not be observable.
Similarly, the observable canonical form is always observable, but may or may not be controllable. �

3.5 Feedback Stabilization

The notion of controllability, but definition, ensures that we have full control over the state of the system
using the control signal u(t), making it possible to take the system from any initial state to any final state in
a finite amount of time. This is often called “point to point control”. Even though point to point control is
how controllability is defined, in many real-world scenarios we are interested in a different control problem:
stabilization.

Assume that you have an internally unstable system. Stabilization (a.k.a. regulation) is the problem of
designing the control input u(t) such that the controlled system becomes stable. This can take different
forms, but the most common form is state feedback stabilization:

System

K

y(t) = x(t)u(t)

In this framework, the input is a constant (matrix) gain times the state,

u(t) = Kx(t)

and we want to choose the matrix K such that the close-loop system is stable.

By direct substitution, we readily see that

ẋ = Ax + Bu

= Ax + BKx

= (A + BK)x

so the stability of the close-loop system depends on the eigenvalues of

A + BK

Note that K ∈ Rm×n has mn elements, but A + BK has only n eigenvalues. So we have mn degrees of
freedom (variables to freely choose) to determine n eigenvalues. Looks like a favorable situation, right?

13

ME 120 – Linear Systems and Control
Copyright © 2020 by Erfan Nozari. Permission is granted to copy, distribute and modify this file, provided that the original

source is acknowledged.



3.5 FEEDBACK STABILIZATION

Example 3.5.1 (Pole placement) Consider the system

ẋ =

2 −3 1
3 2 2
1 3 2

x +

 1
−1
3

u
Without the effect of input (if u ≡ 0), the open-loop system has eigenvalues

λ1 = 3, λ2,3 =
3

2
± j
√

11

2

and is therefore (internally) unstable. So by closing the loop and choosing u appropriately, we try to make
the closed-loop system asymptotically stable. The linear state feedback gain is

K =
[
k1 k2 k3

]
∈ R1×3

and u = kx. So the closed-loop coefficient matrix is

A + BK =

 2 + k1 −3 + k2 1 + k3
3− k1 2− k2 2− k3
1 + 3k1 3 + 3k2 2 + 3k3


and has the characteristic polynomial

det(λI− (A + BK)) = λ3 + (−6− k1 + k2 − 3k3)λ2 + (14− 2k1 − 13k2 + 14k3)λ+ (−15 + 35k1 + 10k2 − 55k3)
(3.17)

We want the closed-loop system to be asymptotically stable, so we want the roots of this polynomial to be
in the left half plane. But otherwise, the roots can be anything. In other words, there are infinitely many
ways to make the closed-loop system asymptotically stable, and just saying that we want the closed-loop
system to be asymptotically stable does not uniquely determine K. To uniquely determine K, we have to
fully determine the closed-loop characteristic polynomial or, equivalently, fully determine the closed-loop
eigenvalues. This is of course a design choice. Assume we want

closed-loop eigenvalues: λ1 = −1, λ2 = −2, λ3 = −3 (3.18)

which gives the desired characteristic polynomial

(λ+ 1)(λ+ 2)(λ+ 3) = λ3 + 6λ2 + 11λ+ 6

Comparing this with Eq. (3.17), we see that we need
−6− k1 + k2 − 3k3 = 6

14− 2k1 − 13k2 + 14k3 = 11

−15 + 35k1 + 10k2 − 55k3 = 6

This is a linear system of equations, with the unique solution

K =
[
−4.2 −3 −3.6

]
Now, assume everything is the same, except that we have

B =

 1
−1
−1
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3.5 FEEDBACK STABILIZATION

We still want to choose K such that the closed-loop system is asymptotically stable. This time, the closed-loop
characteristic polynomial becomes

det(λI− (A + BK)) = λ3 + (−6− k1 + k2 + k3)λ2 + (14 + 2k1 − 5k2 − 2k3)λ+ (−15 + 3k1 + 6k2 − 3k3)
(3.19)

and, if we still want the closed-loop eigenvalues to be as in Eq. (3.18), we get the linear system of equations
−6− k1 + k2 + k3 = 6

14 + 2k1 − 5k2 − 2k3 = 11

−15 + 3k1 + 6k2 − 3k3 = 6

This system of equations, unlike last time, has no solutions (check it yourself)! In fact, it is straightforward
to check that λ = 3 is always a root of Eq. (3.19), regardless of k1, k2, k3 (notice that λ = 3 was one of the
open-loop eigenvalues). So not only the desired eigenvalues in Eq. (3.18) are impossible to obtain, but in fact
it is impossible to stabilize this system using state feedback! �

The difference between the two systems in Example 3.5.1 is of course their controllability:

Theorem 3.5.2 (Pole placement and controllability) The eigenvalues of A+BK can be assigned arbi-
trarily (provided that complex eigenvalues are selected in conjugate pairs) if and only if (A,B) is controllable.
�

You can easily check that the first system in Example 3.5.1 is controllable, while the second one is not.

When you have a controllable (A,B), as I said above, choosing the location of the closed-loop eigenvalues
is a design choice. As a rule of thumb, do not choose the closed-loop eigenvalues too close to the imaginary
axis, too far from it, or too far from the real axis. These result in, respectively, a very slow system, a
noise-amplifying system, and a very rapidly oscillating system, neither of which are desirable in practice.

From Theorem 3.5.2, you can see that controllability may be too much to ask. If all we need is stabilization,
we don’t need to choose the closed-loop eigenvalues arbitrarily, we only need them to be in the left half plane.
It turns out that sometimes, that is possible even if the system is not controllable:

Example 3.5.3 (Partial pole placement) Consider the system

ẋ =

−4 −3 −2
6 −1 5
7 3 5

x +

 1
−1
−2

u
The open-loop eigenvalues are

λ1 = 3, λ2,3 = −3

2
± j
√

11

2

so the open-loop system (u ≡ 0) is unstable, and you can easily check that the system is not controllable. So
by Theorem 3.5.2, we know there is no hope in trying to assign the closed-loop eigenvalues arbitrarily. But
there is still a possibility that we can stabilize the system. Recall that in the second system of Example 3.5.1,
stabilization was not possible because one of the unstable open-loop eigenvalues (λ = 3) was always a closed-
loop eigenvalue, regardless of k1, k2, k3. So let’s check the open-loop eigenvalues for our system in this
example. Here our closed-loop characteristic polynomial is

p(λ) = det(λI− (A + BK))

= λ3 + (−k1 + k2 + 2k3)λ2 + (−4− 3k1 + 3k2 + 6k3)λ+ (−15− 5k1 + 5k2 + 10k3)
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3.5 FEEDBACK STABILIZATION

and we can check that

p(3) = −23k1 + 23k2 + 46k3

p(−3/2 + j
√

11/2) = 0

p(−3/2− j
√

11/2) = 0

This means that two of the open-loop eigenvalues, namely, λ2,3 = − 3
2±j

√
11
2 are always closed-loop eigenvalues

as well (regardless of K), but λ1 = 3 is not necessarily. This is great news, because both of λ2,3 = − 3
2 ± j

√
11
2

are stable, and we don’t worry about them being closed-loop eigenvalues as well. All we need to do is change
λ1 with a stable eigenvalue. By factorizing p(λ) (MATLAB factor()), we see that

p(λ) = (λ2 + 3λ+ 5)(λ− 3− k1 + k2 + 2k3)

clearly showing that the closed-loop system can be made stable if λ1 = 3 + k1 − k2 − 2k3 is chosen to be in
the left half plane, which can be done in infinitely many ways. �

In general, if you want to stabilize a system that is uncontrollable, check the open loop eigenvalues one by
one. At least one of them will be a root of the closed-loop characteristic polynomial p(λ), no matter what K
you choose. If that eigenvalue is unstable (like the second system of example 3.5.1), there is nothing you can
do! But if only stable open-loop eigenvalues satisfy p(λ) = 0, then you can take their corresponding factors
out of p(λ) and then choose K such that the remaining eigenvalues are set as you wish! In this latter case,
the system is called stabilizable:

Definition 3.5.4 (Stabilizability) The system

ẋ = Ax + Bu

or, equivalently, the pair (A,B) is called “stabilizable” if K can be chosen such that all of the eigenvalues of
A + BK belong to the left half of the complex plane. �

Note that stabilizability is a weaker condition than controllability (any controllable system is stabilizable,
but not vice versa).

Exercise 3.5.5 (One link robotic arm) Consider a one link robotic arm described by the system of ODEs

For simplicity, assume J1 = J2 = F1 = F2 = K = N = m = g = d = 1, and take the angle of the arm as the
system’s output.

(i) Determine the system’s state, input, and output.

(ii) Find the system’s equilibria corresponding to T ∗ = 0.

(iii) Linearize the system around each of the above equilibrium points. Put the resulting linear system in
the standard LTI form.
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3.5 FEEDBACK STABILIZATION

(iv) Compute and plot the impulse responses of each of the linearized systems. Do your results match your
intuition?

(v) Determine the internal and input-output stability of each linearization. Does your answers match your
intuition?

(vi) Are the linearized systems controllable? Observable?

(vii) Discretize each of the linearized systems using Euler discretization and a sample time of Ts. Are the
discretized systems internally stable? Controllable? Observable? How does your responses depend on
Ts?

(viii) Find a control signal that takes each of discretized systems from the initial state of downward rest to
the final state of upward rest in tf = 1000Ts.

(ix) Assume Ts = 1ms. Simulate each of the above designed control signals in MATLAB in the original
nonlinear, continuous-time system using MATLAB ode45. Does the system go from downward rest to
upward rest, as desired? Why or why not? (Hint: note that the control signal that you have designed
is in discrete time, but ode45 simulates the continuous-time system. So you need to transform your
discrete-time input signal to a continuous-time signal. To do so, let your continuous-time signal be
piecewise constant, taking the constant value of u(k) for the interval t ∈ [kTs, (k + 1)Ts).)

(x) Now stabilize the continuous-time linearization around the upward equilibrium using pole placement.

(xi) Simulate your controller using MATLAB ode45. Is the system stabilized towards the upward equilib-
rium? Does that depend on what initial condition you run the system from? Explain your results.

�
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